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AIIstnct-This paper is devoted to the problem of free, harmonic vibrations of thin, clastic,
spherical shells. The differential equations are rederived in an invariant form together with the
appropriate kinematic and static boundary conditions.

The complete solution is presented for axisymmetric and non-axisymmetric vibrational modes
for a shell in the shape of a spherical zone with two boundaries. The hitherto unsolved problem
of non-axisymmetric vibrations of a spherical shell with a circular opening is included as a special
case.

Numerical examples are given covering a variety of boundary conditions and a wide range of
the geometrical parameters.

I. INTRODUCTION

The first attempts to solve the theoretical problem of the vibrations of a thin, elastic,
spherical shell precede the formulation of the classical theory of shells. Thus, Lamb[l]
adapted results derived· earlier on the vibrations of an elastic sphere to the case of a shell
bounded. by two concentric spherical surfaces. By determining the limit as the thickness
approaches zero, he obtained the solution for a complete spherical membrane. Lord
Rayleigh [2] concluded from physical arguments. that the middle-surface of a vibrating
shell remains unstretched and determined the frequencies of an open spherical shell using
this condition. Whereas Lamb found that the frequencies were independent of the
thickness (extensional vibrations), Lord Rayleigh found them to be directly proportional
to the thickness (flexural vibrations). Although Lamb's solution concerned the complete
spherical shell and Lord Rayleigh's the open, the two solutions could hardly be reconciled,
considering the case of a spherical shell with a small circular opening. Also, it soon became
clear, that the conditions at a free boundary could not be satisfied without at least some
extension of the middle-surface and that therefore Lord Rayleigh's solution could only be
approximate. Its range of validity could not, however, be determined.

In his celebrated paper of 1888, Love[3] combined the effects offlexural and extensional
deformations and thus laid the foundations of the now classical theory of shells. He also
included in his paper an analysis of the extensional vibrations of open spherical shells.

The general differential equations for spherical shells were derived by van der Neut[4]
and Havers[5] for the static case and generalized to the dynamic case by Federhofer[6].
However, the analytical difficulties in solving these equations have until now been
overcome only in some special cases, such as shallow shells[7], extensional modes[8], and
axisymmetric modes [9], while the general case has not yet received a satisfactory treatment.

In this paper the equations of bending of spherical shells are rederived in an invariant,
coordinate-independent form, which is remarkably simple. The complete solution in
spherical coordinates is obtained together with static as well as kinematic boundary
conditions. The problem of free vibrations leads to an 8 x 8 frequency determinant
equation, and explicit formulas for the elements of this determinant are given.

The work in solving the problem numerically includes the computation of associated
Legendre functions of integral order and complex degree, but requires in the whole only
a modest effort due to the simple fonn of the coefficients appearing as elements of the
frequency determinant.

2. FIELD EQUATIONS

A spherical surface is characterized by its constant curvature. In mixed form the
curvature tensor dl in any coordinate system is equal to plus or minus Kronecker's delta
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66l! F. 1. NIORDSON

(5/ divided by the radius R of the sphere. The sign will depend on our choice of surface
coordinates, and we shall take it such that

1
dp=--a p
• R •

where a.p is the metric tensor. With (2.1) the strain tensor takes the formt

and the bending tensor becomes

(2.1 )

(2.2)

(2.3)

Here, D. denotes covariant differentiation with respect to the surface coordinate u·, v,
is the tangential displacement vector, and w the normal displacement.

We shall now take advantage of the possibility of using alternative measures of
bendingt. IQ particular, we see that by taking

(2.4)

the bending tensor becomes a function of w only,

(2.5)

and that this property will prove useful in leading to simple equations.
The principle of virtual work will require

where N«P and M·P are the membrane stress and moment tensors, respectively, and fJ·p

the augmented membrane stress tensor. The equality will hold good when

(2.6)

which is the appropriate membrane stress tensor.
The equations of equilibrium are§

(2.7)

and

where P and p are the external forces.
Substituting (2.1) and (2.6), we find

D.fJ«P+ F/i = 0

tSee, e.g. Ref. (110]. pp. 53-62).
tIbid. pp. 111-113.
§Referencc [10], p. 92.

(2.8)

(2.9)
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and

D D M ap + 1 M a + I N- a -
a p R2 a R a -po

From Hooke's law we get

and
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(2.10)

(2.11 )

where E is Young's modulus, v Poisson's ratio, h the thickness of the shell and
D =Eh3/12(1 - v2

) the shell constant. We stress that the uncoupled eqns (2.11) and (2.12)
hold good with the same accuracy for K4 and !lafJ as for K.- and N4.

When the shell performs free, harmonic vibrations of small amplitude, the state is
governed by the equations of equilibrium (2.9) and (2.10) with FfJ and p given by the
d'Alembert forces

(2.13)

where (J) is the angular frequency and y the specific mass of the material.
Substitution of (2.11)-(2.13) into (2.9) and (2.10) yields

(2.14)

and

(2.15)

respectively, where

A. = (J)2(l - v2) r R2 (2.16)
E

and
h2

k = 12R2' (2.17)

Since any vector field may be written as the sum of an irrotational and a solenoidal
part, we write

(2,18)

where 'P and Xare two scalar functions. Taking the covariant derivative and contracting,
we get

(2.19)

If instead of contracting, we multiply by the alternating tensor f. e_, we find

(2.20)

which is the local average rotation.
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By substituting (2.14) and observing the rules for interchanging the order of covariant
differentiation,t we get

Multiplying by the operator o'PD., we get

(2.22)

and hence

(2.23)

where Ie is a harmonic function.
Multiplying (2.21) instead by (,PD., we get

(2.24)

and thus

(2.25)

where p is a harmonic function.
By substituting (2.23) and (2.25) back into (2.21) we find

(2.26)

which, when compared with the Cauchy-Riemann equations for the real and imaginary
parts of an analytic function, shows that Ie and (I - v)/2p are conjugate harmonic.

A particular integral of (2.23) is

and of (2.25)

p
Xo= 2 2,{

R2 + (l-v)R 2

Substituting "0 and Xo into (2.18), we get

(2.27)

(2.28)

Df' DYp_
vp = 1_ v ,{ + £.,p 2 2,{ - 0

--:R2+ R 2 R 2 + (1- v)R 2

due to (2.26). Thus, conjugate harmonic functions do not contribute to the displacements,
and we may therefore, without loss of generality, take Ie =P =O.

tSee Appendix A.
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The first two equations of equilibrium can therefore be written in terms of the rotation
and dilatation as

(
2 2A)

..1 + R2 + (1 _ V)R2 X=0

and

(
I-v A) l+v

..1 +--+- 'I' +--w =0
R 2 R2 R

respectively. The third equation is obtained when (2.18) is substituted into (2.15),

(2.29)

(2.30)

(2.31)

The equations of equilibrium (2.29}-(2.31) are thus expressed in terms of three scalar
functions, 1., tp, and w. The only differential operator appearing in the equations is the
invariant Laplacian operator ..1.

The equations are partly decoupled, since only 1. appears in the first one, and since it
only appears there. In general, however, coupling is caused by the boundary conditions.

It should be stressed, that the equations are accurate, in the sense that they are fully
consistent with Love's first approximation.

3. BOUNDARY CONDITIONS

Let bV« and bw be arbitrary virtual displacements and 6EtrP, M(.I the corresponding
tensors of strain and bending according to (2.2) and (2.3). The forces and moments acting
at the boundary, corresponding to the field tensors NtrP and MtrP, are derived from the
principle of virtual work, which leads to the following equalityt

where the surface integral is extended over a domain !!J of the middle-surface and the line
integral over the closed boundary re. Here

is the membrane force vector,

a
Q = - n.D M«' - - (M«'n t.),. « as «,.

is the effective shear force,

(3.2)

(3.3)

(3.4)

the bending moment, and nIl' ttl the unit norma} and tangent vectors, respectively, to the
curve f(I.

Using (2.4) and (2.6) the equality (3.1) can be written in the form

ft (N"'bE",+ M"'bK",)dA =£. (NbU +SbV + QcSw +M.~ bW)ds (3.5)

tReferen~ (10], p. 91.
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where u and v are the normal and tangential displacements at the boundary,

(3.6)

and

(3.7)

arc the normal and tangential membrane stresses, respectively.
With the help of (2.11) and (2.12) we find

[
1+ v ]MB=D (l-v)n«n~D..D~w+v.1w+-2-w

(3.8)

(3.9)

(3.10)

(3.11)

The bending moment Mg and the three boundary forces N, S, and Q are at our disposal
and can be freely prescribed along the boundary, provided that they are in equilibrium
with the external (d'Alembert) forces. The four boundary conditions and the eight-order
system (2.29}-(2.31) constitute a wen-posed mathematical problem.

The static boundary conditions may be replaced by kinematic conditions according to
the r.h.s. of (3.5). Thus, we may prescribe

. o'fl aX
eIther N or u = an - as' and

. fJ'fI aX
either S or v =as + an' and

'h owelt er Me or on' and

either Q or w.

or, more generally, four linear combinations of these quantities.
Whether we have static or kinematic conditions at the boundary, we see, that in

general, there will be a coupling between the function Xand the two functions Y' and w
through the boundary conditions. However, if the shell is complete, there are no boundary
conditions and therefore no such coupling. In that case Xcan be determined independently
of t/J and w, and vice versa.

4. SOLUTION OF THE FIELD EQUATIONS

By retaining the Laplacian .1 as an operator, and observing that all coefficients of (2.30)
and (2.31) are constant, we can solve the system by an operator method. To do that, we
write (2.30) and (2.31) in the form

Allw + A 12'f1 =O}
A21 W + A 22 'f1 == 0

(4.1)
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where the operators are given by

I+v
All ==-­

R

Taking

the system (4.1) will be satisfied whenever S is a solution of the equation

where S is a potential function for solving the system (4.1) for spherical shells.
We can factorize this differential equation and write it in the form

673

(4.2)

(4.3)

(4.4)

(4.5)

where p is the real root, and , ± i'1 the two complex conjugate roots of the following
algebraic equation of third degree in Lt,

where

~=4+l )
CI = (I - v" -l)/k + 5 - v" + (3 + v)A.

Co = [2(1- v") + (I + 3v)l- A.,,]/k + 2(1 - v") + 2(1 + v»).

(4.6)

(4.7)

For given values of v, k and A., this equation can be solved by Cardan'sformula or other
well-known methods.

For small values of A., p is close to -2, eclose to -1, and '1 approximately equal to
J(t - v">/k. Thus, '1 is of order R/h, while p and eare of order unity. The small terms
in (4.7) are therefore important and cannot be omitted without seriously affecting the
result.

We find, that the complete solution of the problem can be expressed in term of the
solution to one single second-order differential equation. Using conventional notation we
shall write that in the form

(4.8)

where (f is a real number in two of the equations and complex conjugate in the remaining
two. When A. is greater than a certain critical value lc, which for aU values of k and v of
practical interest lies in the neighbourhood of one (A.c~ 1), all three roots of (4.6) become
real (casus irreducibilis), and the parameter (f will be real in all four equations. This makes
the analysis and the numerical evaluation neither simpler nor more complicated, although
naturally, the mere fact that the two cases A. < A.c and A. > A.c have to be treated separately,
since they require different algorithms, is a complication.

In the following we shall give the analysis and all relevant formulas for the important
case). < lc' while for simplicity, the corresponding formulas for A. > A.c will be omitted.
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To proceed, we introduce spherical coordinates 0, (jJ, where 0 is the co-latitude, and
(jJ the longitude. We shall also restrict our analysis to solutions that are periodic in (jJ, with
the period 2n. This will include complete shells, shells with one boundary 0 = (X ("bowls"
or "bells"), and shells with two boundaries 0 = al and 0 = (X2 (spherical "zones"). In all
cases we can expand the field functions in Fourier series. For the solution y we write

00

y = L [Cm(O) cos m(jJ + Dm(O) sin m(jJ]
m=O

(4.9)

where Cm(O) and Dm(O) are functions of O.
When (4.9) is substituted into (4.8) and the coefficients of the trigonometric functions

are put equal to zero, we get

(4.10)

for which the complete solution ist

(4.11 )

where Pa- mis the associated Legendre function of the first kind, degree u, and order - m.
A and B are arbitrary constants.

Since u may be complex, the functions are in general complex, and we shall write

where Ra-m and Sa- mare the real and imaginary parts, respectively.
The complete solution is given by

.= = [AlP ;m(cos (}) + A2Rc-m(cos (}) + A3SC-m(cos (})

+ AsPa-m(cos (n - 0» + A6Ra-/ft(cos (n - 8»

+ A7SC-/ft(cos (n - onJ cos m(jJ

X = ~ [A.P ,-/ft(cos 0) + AsP,-/ft(cos (n - 0»] sin m(jJ

where

(4.12)

(4.13)

u(u+l)=-fJ; '«+l)=-~-i'1; r(r+l)=-y. (4.14)

The parameters fJ, ~, and '1 are given by the roots of eqn (4.6), and y is determined
by the condition that X satisfies (2.29), i.e.

2;'
Y =2+--.

I-v
(4.15)

With the potentials .= and Xdetermined, we proceed to find all relevant quantities. For
that purpose we shall need the derivatives of R;/ft and s;m.

From the formula~

tSee appendix B.
tSee Ref. [II], p. 114.

( I_X2)~p-m= _ ~P-/ft+l+mxp-mdx a V I -.A, a a (4.16)
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we find

~R-m = R-m+l_ m cot OR -m 1
dO - t1 t1

~s-m= s-m+l_ m cot OR -m .
dO t1 t1 t1

Also. if (R;m + is;m) cos mq, satisfies the differential equation

(
O+ib) .Lf +Ji:2 (R;m + ls;m) cos mq, = 0

with 0 + ib =u(u + 1), we deduce that

675

(4.17)

(4.18)

The second and all higher derivatives can therefore be expressed in terms of functions
of order -m and -m + 1.

The normal displacement wand the scalar function 'P are obtained when E according
to (4.13) is substituted into (4.3). With X, 'P. and w in hand we can determine all relevant
quantities: displacements, forces, and moments.

Substitution into (3.8)-(3.11) yields

(4.20)

The 64 coefficients CNI•••• '~. can be written more compactly by using the following
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abbreviations,

and
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m(m + I)
al == . 2 Qsm u

a2 == (m + I)(~ -I) __A_
sm2 0 1 - v

a3 == (1- v)(m + I)(~ -1) +2-P
sm 0

a4 == A+ 1- v - p

m(m + 1)
a7==(l-v) . 20 -2

S10

~ = P;m(eos 0); fJ/ = P;m(eos (1t - 0»

~I = P;m+ I(eos 0); fJ/1=P;m+ I(eos (1t - 0»

(4.21 )

We get

fl. = P t- m(eos 0);

fl. 1 =Pt-m+l(eosB);

~ = R,-m(eos 0);

~I = R,-m+ I(eos B);

9' = S ~ m(eos B);

9'1 = S,-m + I(eos 0);

~ =Pt-m(eos (1t - B»

~I = P,-m + I(eos (1t - 0»

ik =R,- m(eos (1t - 0»

ik l = R,-m+ I(eos (1t - 0»

!/ = S ~m(eos (1t - B»

!/I = S,-m+ I(eos (1t - 0».

(4.22)

CNI=a2~-eotO~1

cN2=a2~-eotB~1

CN) = a29' - eot B9'1

m
CN4 = (1 + v) sin () [em + 1) eot Bfl. - fl..]

CNS = a2fJ/ + eot B fJ/ 1

CN6 = a~ +eot(} Btl

CN7 = a2Y + eot BY1
m A A

CNS = (1 ). () [em + 1) eot Bfl. + fl.)]+v sm

(4.23)
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m
CSt =a. cos () {P - -=--() {PI

sm

m
CSl =a. cos () f/ - -=--() f/ Ism

CS4 = (a
l

- m _1)"'!:""- _cot () ~I
2 I+v I+v

~ m ~

CS6 =al cos 0 gt + -=--(J gt.
sm

- m_
CST = a. cos (J f/ + -=--(J f/)

sm

677

(4.24)

CM1 =a.[(1 - v) cot (J fJ'J - a3fJ']

CM2 = (,,2 - aSa6)(JI- " (as + a6)f/ + (I - v) cot (J (~. + "f/.)

CM3 = (,,2 - asa6)f/ + " (as + a6)(JI + (I - v) cot (J(~f/. - "Bl I )

cM.=O

CMS = - a.[(1 - v) cot (Jg,l + a3g,]

CM6 =(,,2 - asa6)dI - " (as + ~)~ - (1 - v) cot (J(a,,9l. + "~l) (4.25)

Cm = (,,2 - aSa6)~ + " (as + a6)dI - (I - v) cot (J(a6~) - "dI.)

CMS =0

CQI = m cot (Ja.(a7 + P)fJ' - a.(as + P)fJ'1

cQ2 =m cot (J,,(a7 - ~ + ~)f/ + m cot (J[,,2 + a6(a7 + ~)](JI

- [,,2 + a6(aS + e)]BI. - " (as - ~ + e)f/.

CQ3 =m cot (J,,(a7 - ~ + e)(JI + m cot (J[,,2 + ~(a7 + e)]f/

- [,,2 + a6(as + e)]f/. + ,,(a8 - ~ + e)(JI1

cQ4=O

cQs = m cot (Ja.(a7 + p~ + a.(as + P)PI (4.26)

cQ6 = m cot 0,,(a7 - a6 + e)~ + m cot (J[,,2 + ~(a7 + e)Jbf
+ [,,2 + ~(as + e)]iI. + " (as - a6+ e)~.

cQ7 = -m cot (J,,(a7 - ~ + Oi + m cot (J[,,2 + ~(a7 + e)]~

- [,,2 + ~(as + e)]~1 - ,,(as - Q6+ e)dI.

cQ8=O
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Cui = (1 + V)(&'I - m cot (J&J)

Cu2 = (l + v)(9f1 - m cot (J9f)

Cu3 = (I + V)(.9"1 - m cot ().9")

m
cu4 = - -.- 12

SIn ()

CuS = (1 + V)(§P, + m cot (J§P)

cu6 = (1 + v)(§tJ + m cot ()fJt)

Cu7 = (1 + v)(9\ + m cot (JY)

m A

CuB =-.- 12
Sin ()

m
Cvl = - (I + V)-.- rJI

Sin (J

m
Cv2 = - (I + V) -.- 9t

Sin (J

m
Cv3= - (1 + V)-.-.9"

Sin ()

Cv4 = - m cot (J12 + 12.

m A

Cv6 = (l + V) -=--() 9tsm

m A

Cv7 = (1 + V) -=--() .9"sm

Cv8 = m cot ()]! + ~J

CIO'4=O

Cw8 =0

(4.27)

(4.28)

(4.29)
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c;, =a.(m cot (J9' - 9',) 1
C;2 = a6(m cot 991- 91,) + m cot 911[/ -11[/,

C;3 =tlt,(m cot (J[/ - [/,) - m cot 9'191 + '191,

C;4=0

C;5 = - a.(m cot o~ +~t)

C;6 = - a6(m cot (JiJt + iJt,) - m cot (J111/ - ,,1/1
C.7 = - a6(m cot (J!/ +1/1) +m cot 911 iJt + 11!it,
c;s=O.
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(4.30)

We are now prepared to formulate a solution to the problem. For a shell in the shape
of a spherical zone there are four homogeneous boundary conditions at each boundary.
This leads by (4.20) to a linear, homogeneous system of eight equations for the eight
unknown coefficients AI> ... , As. The condition for a non-trivial solution is that the
determinant vanishes. For instance, if both boundaries are free, we get

CN,(a,) ••• c",(a,)

cs,(a,) ••• css(a,)

cM,(a,) •.• cM8(a,)

Cat(a,) .•• cQ8(a,)

cNl(aJ • •• c",(aJ

cs,(a2) ••• cSS(a2)

CMt(1X2) ..• CM8(1X2)

ca,(aJ • •• cQ8(<<J

=0 (4.31)

The roots of this transcendental equation determine the natural frequencies of a
spherical shell with two free boundaries.

When (1 is not an integer, the associated Legendre functions PII-"'(x) have a singularity
at x = I. Therefore, if the shell contains the pole (J =0, the coefficients As, A6, A" and As
must be zero. This reduces the number ofunknown coefficients to four (A" A2, .,43' A4), and
that is precisely the number needed to satisfy four conditions at one boundary 9 == a. For
a spherical bowl with a free boundary the frequency determinant is just

CN' CN/. Cm CN4

CSI C51 C53 CSt
=0 (4.32)

CM' CM2 CM3 CM4

Cal Ca2 Ca3 CQ4

where aU elements are evaluated at (J == a.
When the shell is complete, both poles (J = 0 and (J =: 1t are included, and there remains

no possible solution, unless (J is integral «(1 == n).
Also, when the shell is complete, the first equation of equilibrium (2.29) is decoupled

from the remaining two. A solution of the system is therefore

x=: P,.-"'(cos 9) cos mq,; w == tp == 0 (4.33)
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which, when substituted into (2.29)-(2.31) leads to the relation

n
n(n+ 1)=2+-

1
-,
-v

Utilizing (2.16) we find the corresponding frequencies to be

IfG
w = J(n -1)(n +2)"R..j-:V n = 1,2, ... (4.34)

(4.37)

where G =E /2( I + v) is the shear modulus.
For each integer n > 1 there is one axisymmetric mode and n non.axisymmetric modes,

given by m = 1, 2, ... ,n, corresponding to the surface harmonics of order m. The
frequency w however, is independent of m. This seemingly paradoxical situation can
readily be explained as a consequence of spherical symmetry. Thus, for instance, the mode
X=P2- 2(cos 9) cos 24> can be obtained by superimposing two axisymmetric modes
P2(cos 9), one tilted 90° relative to the other, and with amplitudes in the ratio 1; 2. In fact,
all higher modes of a given degree n can be obtained by superimposing a number of
axisymmetric modes of degree n, with properly chosen axes and amplitudes. Therefore, the
frequency depends on n only, not on m.

Besides (4.33), the equations of equilibrium (2.29)-(2.31) are also solved by

x=O; w=APn-m(cos9)cosm4>; 'P=BRPn-m(cosO)cosm4>. (4.35)

Substitution leads to the following linear system

(I + v)A +[1- v +,\ -n(n + 1)}B =0 }
2 I + v) -,\ I + v . (4.36)

{[2-n(n + 1)][1 + v - n(n + 1)]+ (k }A --k-n(n + I)B =0

When n = 0, the second equation yields

,\ =2(1 + v)(1 + k)

and hence, after omitting the small term k,

2 2E
W = (I _ v)I'Rl"

The mode is Po = I, corresponding to a uniform extension.compression of the shell in
a wholly radial motion.

In the general case (v > 0) the frequency is determined from the condition that the
determinant of (4.36) vanishes. For thin shells and low numbers n, n4 can be neglected in
comparison with 11k. In such cases we find the equation

(4.38)

For each value of n there are two roots to this equation, corresponding to modes of
quite different character.

Equations equivalent to (4.34) and (4.38) were derived by Lamb[l] but in a different
way. He found that the frequencies were independent of h, which is characteristic of purely
extensional vibrations. Of course, all modes (4.35) are contaminated with bending, and if
the "small" terms of (4.36) are retained, we shall find that). is in fact dependent on h/R.

5. NUMERICAL RESULTS

We shall find it convenient to give the frequency in the form

(5.1)
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Table I. First frequency of a spherical shell with one or two free boundaries III and ~ for m - 2.
hlR - 0.01, and v - 0.3

Coefficient c

-2
"l 0° 15° 30° 45° 60° 75°

15° 39.0787

30° 10.4706 8.5815

45° 5.0520 4.7600 3.6433

60° 3.1843 3.1070 2.7983 2.1798

75° 2.3929 2.3669 2.2593 1.9989 1.6133

90° 2.0809 2.0711 2.0275 1.8942 1.6622 1.4015

105° 2.0923 2.0884 2.0676 1.9800 1.7730 1.5679

120° 2.4846 2.4830 2.4689 2.3700 2.0523 1.7730

135° 3.6599 3.6590 3.6369 3.2486 2.3700 1.9100

150° 7.4287 7.4267 6.9705 3.)669 2.4689 2.0676

165° 27.1373 26.5061 7.4267 3.6590 2.4830 2.0814

180° 1118.493) 27.1373 7.4287 3.6599 2.4846 2.0923

681

Here, c is a dimensionless coefficient, which for given boundary conditions will depend on
five parameters. Three of them, h/R, IX., and 1X2 describe the geometry ofthe shell, one is
Poisson's ratio v, and finally there is the wavenumber m.

For inextensional vibrations-if such existed-e would be independent of h/R and v.
For purely extensional vibrations (such do exist), c is inversely proportional to h/R. Our
choice of representation (5.1) reflects the fact that all modes connected with the lower range
of the spectrum are mainly flexural, i.e. in this range c depends only weakly on h /R
and v.

For given values of the five parameters, the frequency determinant (4.31) has an infinite
number of roots, and we shall refer to them and their modes in order ofmagnitude, calling
the lowest the first, etc. From a practical point of view only the first few are of interest.

In working out the numerical values, the roots of the frequency determinant were
calculated by a simple iterative method to an accuracy corresponding to eight significant

Table 2. Second frequency of a spherical shell with two free boundaries III and 112 for m - 2,
hlR -0.01. and v -0.3

Coefficient c

-2
"l

15° 30° 45° 60° 75°

30° 47.2592

45° 33.8057 14.2289

60° 30.2816 10.3504 6.6661

75° 28.8240 8.8893 5.2616 4.2597

90° 28.0970 8.2272 4.5658 3.6505 3.4573

105° 27.6984 7.8886 4.2151 3.3233 3.2413

120° 27.4665 7.1039 4.0581 3.2862 3.3233

135° 27.3253 7.6088 4.2652 4.0581 4.2151

150° 27.2379 7.9891 7.6088 7.7039 7.8886

165° 27.8199 27.2379 27.3253 27.4665 27.6t84
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Table 3. First and second frequency of an equatorial zone for hlR =0.04 and v =0.3

Coefficient c

OJ
rUst two modes

°2 I

In plane I Out of plane

100° 80° 1.3046 ! 3.2050
!

95° 85° 1.2553 2.9794

92° 88° 1.2496 1.9889

91° 89° I. 249 t 1.1488

Ring 1.2490

figures. The associated Legendre functions appearing in the fonnulas were calculated using
the hypergeometric series as explained in Appendix B.

The coefficient c for the first frequency in the case of a free spherical shell with one
or two boundaries and with h/R =0.01, v = 0.3 and m =2 is given in Table I as a function
of the co-latitudes of the boundaries 1X, and 1X2(1X, > 1X2 ~ 0).

Since bending for thin shells is confined to a comparatively narrow region at the
boundary, the frequency is strongly dependent on the size of the larger opening but only
weakly on the size of the smaller opening. Naturally, this does not hold when the
intermediate zone is so narrow, that the bending regions at the two boundaries interact.

The second frequency (Table 2) on the other hand is more or less detennined by the
smaller opening.

In the first mode, the sign of w is the same at both boundaries for the same longitude,
and the amplitude is largest at the larger opening. The reverse is the· case in the second
mode, the deflection being of opposite sign at the boundaries, and the amplitude largest
at the smaller opening.

When a spherical shell in the shape of an equatorial zone becomes sufficiently narrow,
it will behave like a slender circular ring. It is well known, that flexural vibrations of a

Table 4. First frequency of a spherical shell with one or two free boundaries:Xl and!X2 for !Xl =90<,
hl'R =0.01, and v =0.3

Coefficient c

"2
m

0° 15° 30° 45° 60° 75°

2 I 2.0809 2.0711 I 2.0275 1.8942 1.6622 1.4015
i
I 3 5.7236 5.7233 5.7068 5.5252 4.6570 3.9829
I, 4 to.8168 10.8168 10.8128 10.6860 9.6110 7.6830

i
17 .1695 17.1278 15.9049 12.5063I 5 l?1903 17.1903

Table 5. First frequency of a spherical shell with IWO free boundaries IXI and 112for IXI '" 90°, m = 2,
and v =0.3

Coefficient c

bitt
Cl2

0° 15° JOO 45° 60° 75°

0.005 2.0997 2.0903 2.0492 1.9217 1.6973 1.4743

0.01 2.0809 2.0711 2.0275 1.8942 1.6622 1.4015

0.02 2.0520 2.0415 1.9943 1.8525 1.6058 ,.,~, \
0.04 2.0073 1.9957 1.9427 1.7852 1.5114 1.2936
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Table 6. First frequency of a spherical shell with two free! boundaries (II and ~ for a, = 90°,
hlR - 0.01 and m =2

CocfIicicnt c

O2
\I

75°0° 15° lOo 45° ftJ°

0.0 2.0582 2.0477 2.0011 1.8602 1.6t72 1.3152

0.1 2.0661 2.0558 2.0103 1.8720 1.6328 1.3456

0.2 2.0736 2.0636 2.0191 1.8133 1.6478 1.3742

0.3 2.0809 2.0711 2.0:275 1.8942 1.6622 1.4015

0.4 2.0881 2.0714 2.0359 t.9049 1.6764 1.U81

0.5 2.0952 2.0157 2.0441 1.9155 1.6904 1.n42
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circular ring fall into two classes, i.e. flexural vibrations in the plane of the ring and flexural
vibrations involving displacements at right angles to the plane of the ring as well as twist. t
The two classes are recognized as the first and second mode, described above. For a zone
of diminjshing width the two frequencies are given in Table 3. Comparison with the result
for a ring shows excellent agreement.

When the angular width of the zone is sufficiently small, the moment of inertia of the
cross section with respect to an axis in the equatorial plane becomes smaller than moment
of inertia with respect to an axis perpendicular to this plane. The frequency for
out-of-plane vibrations may then be the lowest one. This is clearly the case for hiR == 0.04
and 2°.

It may also be checked that the value obtained for a very shallow spherical bowl with
lXI = 15° and lX2 == 0° (c = 39.0787 in Table I) is in good agreement with the value
c =39.031 obtained for a free circular plate of the same diameter and thickness.

For the higher wave numbers m = 3,4, ... etc. the results are quite analogous to those
for m =2. However, since the bending region actually narrows down for increasing wave
numbers, the interaction between the boundaries becomes even less pronounced. This is
illustrated by Table 4, which gives the dimensionless frequency c for a hemispherical shell
(atl == 90°) with an opening of varying size for m = 2, 3,4, and 5. It may be seen that the
influence of the size of the smaller opening diminishes with increasing m.

Table 7. Second frequency of spherical shells with one free boundary for hlR - 0.01, and \I ,.. 0.3

Cocflicicnt c

0 •• 0 • • 1 • • 2

JOO 157.973 162.805

45° 153.087 156.685 160.149

60° 148.331 152.139 155.841

75° 144.110 147.055 t52.045

90° 140.363 141.324 147.929

105° 136 .489 135.289 143.334

120° 132.173 129.520 138.J03

135° 127.626 124.727 133.018

150° 123.321 121.279 127.654

165° 119.929 119.219 122.496

tRefercncc [12J, pp. 4S2-4S3.
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Table 8. First frequency of an open spherical shell with v = 0.3

Coefficient c

r./R

" i ffi Raylelgr.
0.C4 0.02 O.Cl 0.005

60
0 I 2 3.085 3.14 S I 3.184 3.210 3.264

7.647 7.929 8.132 8.267 8.53~

13.659 14.35C 14.901 15.284 16.050

90
0

2.007 2.0S2 2.081 2.100 2.139
!, 3 5.356 5.577 5.724 5.819 6.012
I
I 4 9.834 10.411 10.817 11.086 11.619

120
0

2.341 2.429 2.485 2.521 2.596

6.608 7.025 7.300 7.477 7.83C

12.191 13.239 13.974 14.461 15.413

15C
o I

6.315 6.969 7.429 7.710 EI.257

I 3 16.811 19.479 I 21.372 22 .645 2~,. 094
i 4 28.538 34.489 38.917 42.076 4B.377I,

As already mentioned mentioned, C would be independent of h/R and \I, if the modes
were inextensional. Since no mode is wholly inextensional, however, C will depend on h/R
and \/, as we may see in Tables 5 and 6. They show the coefficient c for the first mode of
a hemispherical shell with an opening of varying size, and for a wide range of thickness
ratios h/R and Poisson's ratio \I. The variation in c amounts to a few per cent, but increases
as the width of the spherical zone narrows, just as we would expect.

The modes for the wave numbers m = 0 and m = I are fundamentally different from
those of the higher wave numbers. In both cases the first root of the frequency detenninant
is zero and the corresponding modes describe rigid body motion. Since there is not even
a kinematical possibility for inextensional defonnation at m = 0 and m = I, all such modes
involve substantial extension of the middle surface and the frequencies are considerably
higher than those of the flexural modes, being comparable in magnitude to those given
by Lamb for the complete spherical shell (Table 7). Also, the bending region is much
narrower than for m =2, and the frequency is practically independent of the size of the
smaller opening, expect for very narrow zones.

When 1X2 = 0 the shell has but one boundary () = IX, and the frequency determinant is

Table 9. First frequency of spherical shells with one boundary for m = 2. h/R = 0.01. and v = 0.3

Coefficient c

Boundary conditions

" ! I 4'----.....,...--=---..,..---=---j-'--=---r--"'---r-~
600 3.184 70.062 \127.321 156.774 157.170 I

2.081 51.925 121.616 145.198 145.324

I 120
0

150
0

2.485 , 43.864

7.429 51.252

122.703 132.664 132.743

121.622 123.405 123.547

w • 0N • 5 - MB - 0

5 • M
B

C 0

M • 0
B

4

~~ St_a_t_lc -+ IC_i_ne_ma_t'_'c_--

iIi N-S=MB-Q-O

; 2 I

u =' v z W ~ d\Ji = 0
dn
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reduced to a 4 x 4 array, which is given by (4.32) for, a free boundary. In Table 8 the
coefficicnts c arc given for different values of IX, m, and h/R. They may be compared with
Lord Rayleigh's solution to the problem, which was based on the assumption of
inextensional defonnation of the middle-surface. The agreement is good for low values of
«, m(m ~ 2), and hjR. For values of IX approaching 1800 the errors become increasingly
grave. Naturally, we would expect this, since it is well known that the frequencies according
to Lord Rayleigh's theory tend to infinity as IX approaches 180°. At first, it may look more
surprising that the agreement for a hemispherical shell for examp1e--although good-is
not much better. It has been arguedt that extension of the middle-surface, although
necessarily present for satisfying the boundary conditions, is practically confined to a
narrow boundary region. But it seems that two factors have been overlook here. Firstly,
not only the boundary conditions, but also the field equations, require at least some
extension of the middle-surface, but this is probably not so important. Secondly, however,
and this is more important, bending is also confined to a narrow region near the edge, and
it is the ratio of strain energy to bending energy that matters. We believe that this fully
explains the difference between Lord Rayleigh's approximation and the results of the
present analysis.

The influence of different boundary conditions are illustrated in Table 9, which gives
the first frequency of an open spherical shell with one boundary. As the static boundary
conditions are replaced, one by one, by the corresponding kinematic conditions, the
frequency is raised. It is evident that the largest increment is achieved in the first steps,
replacing Q =0 by w == 0, and N =0 by u =O. This is due to the fact that the condition
u =w == 0 renders an inextensible spherical surface completely rigid: and that con­
sequently, such a condition will make a thin spherical she)) very stiff. The modes are largely
extensional, and hence the last step, replacing Ma =0 by dwjdn =0, has an almost
negligible influence on the frequency.

Finally, it should be pointed out that the high accuracy with which the coefficient c
has been given in a)) tables above, should not be misinterpreted. naturally, c or rather c2

is a quantity which, in a she)) theory based on Love's first approximation, will be affected
by a relative error oforder hjR. The many digits in the tables are given for the sole purpose
of demonstrating the influence of the different parameters on the frequency.
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APPENDIX A

The Riemann-ehristoffel tensor for the spherical surface is§

1
B.." - R1 (0.,0" - a.,tlr,) (AI)

tSee Ref. [12J, p. 552.
fJ'his is bued on the followina theorem by Jdlett [131: q any CVI'Ve be traced IIptNf an iMxtmsibk S1Iface,

whoseprincipal CfII'VGtures an finite andofthe StlIM sign, and ifthis CIIrve he rnukred inunotNIbIe,~ errtin S1Iface
will become iIrtmootIbk also.

§Reference {IO}, p. 37.
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and the rules for interchanging the order of covariant differentiation of a vcctor and a second order tensor are
found to be

(A2)

and

(A3)

Thus, we have

(A4)

and

(A5)

(BI)

APPENDIX B

The associated Legendre functions of the first kind "on the cut". i.e. for real values of x (Ix I< I). are defined
byt

P;'"(x) =r(m
l
+ I)G ~:r2~ -(1.(1 + I, I +m,1 ;x)

where m is an arbitrary non-negative integer, (1 arbitrary (complex), and F the hypergeometric function, defined
by the series

F«(1" p, y, x) -.1 + 11.f3 X + (1,(<<2~ 1){J(f3 + 1) x 2+". (lxl < I).
I!y .1'(y + I)

When a and {J are complex. each term is complex. and we shall write o. + lb. for the nth term. Then

(B2)

a.+ lb.
0._ 1+ lb._I

(11. +n)(fJ +II)X n2+1I«(1, + !J) + (1,fj
= x

(II + I)(y +11) (II + 1)(11 +Y)
(B3)

and hence. when we replace a{J by -11«(1 + I). i.e. by -~ -111. 11. +{J by 1.1' by m + I. and x by (I-x)/2,
we get

where

and

1(I -X)m/2( '" ) \R.;D1(x)=, -1- 1+ La.
m. +x •• 0

I (1_X)ftlI7( '" )S.;"'(x) = t -1- L b.
m. + x •• 0

W-x) ,,(I-x)
ao= - 2(m + I); bo=- 2(m + I)

(84)

(B5)

0.'" [(Ill + n - {)o.-I + Ifb._ J12(1I + I~~: m + I)I
1-x (B6)

b.=[(n
1

+11 -~)b'-1+,,0'-1]2(1I+ 1)(/1 +m + I)

These formulas were used for numerical evaluation of the Legendre functions in the present analysis for
m > O. For m < 0 the bypergeotnetric function in (81) breaks down. In that case we taket

r(a-m+l)
p.-'"(x) ... (-I)'" r(a -m + 1) p.'"(x). (B7)

For the complete solution we also need the associated Legendre functions of the second kind Q.'"<x). for
which we have the relation§

tReferencc [II]. p. 143,
tReference [II]. p. 140.
§/bid. p. 144.



Free vibrations of thin clastic spherical shells

2 . Ip."'( -x) =P:"(x) cos [7[(0" + m») - - Q:"(x) Sin (7[(0" + m) .
7[
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(B8)

Since 0" is not an integer, but m is, the coefficient for Q:" does not vanish, and hence Q:"(x) can be written
as a linear combination of p.",<x) and p."'( -x). The functions p."'(x) and P."'( -x) are therefore two linearly
independent solutions of (4.10), and hence we have the complete solution.


